RESEARCH ARTICLE


Tissue-specific Effect of Coenzyme Q10 Supplementation on the Oxidative Post-translational Modifications in the Rat



Nilanjana Das1, Chandan Kumar Jana2, *
1 Department of Biotechnology, Visva-Bharati University, Santiniketan, West Bengal 731 235, India
2 Department of Chemistry, Panchmura Mahavidyalaya, Panchmura, Bankura, West Bengal 722 156, India


Article Metrics

CrossRef Citations:
2
Total Statistics:

Full-Text HTML Views: 1413
Abstract HTML Views: 1123
PDF Downloads: 180
ePub Downloads: 114
Total Views/Downloads: 2830
Unique Statistics:

Full-Text HTML Views: 748
Abstract HTML Views: 616
PDF Downloads: 128
ePub Downloads: 90
Total Views/Downloads: 1582



© Das and Jana ; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Chemistry, Panchmura Mahavidyalaya, Panchmura, Bankura, West Bengal 722 156, India; Tel: +091- 3243-268227/205222 (Office); Email: chandanjana@yahoo.com


Abstract

Background:

Coenzyme Q (CoQ), a component of almost all cellular membranes, has been postulated to act as an antioxidant due to its capacity to recycle the oxidized alpha-tocopherol and scavenge peroxy radicals.

Objective:

The present study was performed to investigate the in vivo effects of a long-term supplementation of CoQ10 on oxidative protein modifications in some tissues as the plasma and the brain of the Sprague Dawley rat.

Method:

Male Sprague Dawley rats of 14 months age were supplemented with 150 mg/kg/d of CoQ10 and the effects on oxidative post-translational modifications analyzed after 13 weeks of supplementation.

Results:

Supplementation of CoQ10 for thirteen weeks in adult animals resulted in decreased protein carbonyls due to oxidative post-translational modifications in the plasma (approximately 21%) but an increase of the same in the brain tissue homogenate (approximately 21%) was observed. These alterations were statistically significant in the former while the increase in the latter was statistically not significant.

Conclusion:

The results suggest a tissue-specific effect of dietary supplementation of CoQ10 on oxidative post-translational modifications by carbonylation in the rats.

Keywords : Aging, Antioxidants, Brain, Coenzyme Q10, Dietary supplementation, Oxidative post-translational modifications, Oxidative stress, plasma, Sprague dawley rats.