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Abstract:

Background:

Bisphosphonates are drugs commonly used for  the medication and prevention of  diseases caused by decreased mineral  density.
Despite such important medicinal use, they display a variety of physiologic activities, which make them promising anti-cancer, anti-
protozoal, antibacterial and antiviral agents.

Objective:

To review physiological activity of bisphosphonates with special emphasis on their ongoing and potential applications in medicine
and agriculture.

Method:

Critical review of recent literature data.

Results:

Comprehensive review of activities revealed by bisphosphonates.

Conclusion:

although bisphosphonates are mostly recognized by their profound effects on bone physiology their medicinal potential has not been
fully  evaluated  yet.  Literature  data  considering  enzyme  inhibition  suggest  possibilities  of  far  more  wide  application  of  these
compounds. These applications are, however, limited by their low bioavailability and therefore intensive search for new chemical
entities overcoming this shortage are carried out.

Keywords: Antibacterial agents, Anti-cancer agents, Anti-protozoal agents, Anti-resorptive agents, Antiviral agents, Osteopenia,
Osteoporosis, Plant growth regulators.

INTRODUCTION

Bisphosphonates were first synthesized in the 19th century, and the history of their discovery was not without some
drama [1]. Soon, these compounds had been found to act as strong metal ion complexones [2] with useful industrial and
household applications, including detergents, water treatment agents, dispersants preventing re-disposition of insoluble
inorganic  matter  and  compounds  avoiding  the  metal-catalyzed  decomposition  of  hydrogen  peroxide  in  bleaching
formulations [3].

In the early 1960s, inorganic pyrophosphate was found to act as a natural inhibitor of calcification by its interaction
with hydroxyapatite. This finding made it interesting for pharmacologic  applications in  the treatment  of medical states
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related to bone resorption. Unfortunately, pyrophosphate is metabolically unstable because it is rapidly hydrolyzed in
the  gastrointestinal  tract.  Thus,  seeking  more  stable  compounds,  attention  turned  to  its  analogs,  bisphosphonates.
Similarly  to  pyrophosphate,  bisphosphonates  exhibit  high  affinity  for  bone  hydroxyapatite  and  effectively  prevent
calcification. Today, these compounds have become a powerful family of pharmaceuticals for the treatment of skeletal
complications of malignancy, Paget’s disease, osteoporosis, multiple myeloma, hypercalcemia and fibrous dysplasia.
Their applications, their clinical implications and their mechanism of action have been reviewed in detail [4 - 14].

Therefore, in this review, recent studies on the biological activity of bisphosphonates will be presented with some
general background provided if necessary.

ANTI-RESORPTIVE BISPHOSPHONATES

It is estimated that osteoporosis affects 200 million women worldwide and causes a huge personal and economic
problems. In Europe, disability caused by osteoporosis surpasses that caused by cancer (with the exception of lung
cancer) and is proportional to or even exceeds that lost to a variety of chronic non-communicable diseases, such as
rheumatoid arthritis, asthma and high blood pressure-related heart disease [15].

The treatment of osteoporosis consists of lifestyle measures and pharmacologic therapy. Approval by Food and
Drug Administration (FDA) of alendronate in 1995 resulted in widespread use of bisphosphonates in clinical practice.
Today,  numerous  members  of  this  class  of  compounds  are  available  as  drugs.  It  is  evident  that  over  50  years,  the
bisphosphonates revolutionized the treatment of osteoporosis being first-line therapy for the postmenopausal-type of
this disease.

Early-generation bisphosphonates differ from later-generation bisphosphonates (representative examples are shown
in  Scheme  (1)  by  the  absence  of  a  nitrogen  atom  in  their  structures.  It  was  found  further  that  nitrogen-containing
bisphosphonates  are  able  to  inhibit  bone  resorption  100  to  10,000  times  more  effectively  than  non-nitrogen  ones,
causing nearly complete displacement of the latter compounds from therapy [16].

Scheme (1). Clinically used bisphosphonates.

Drug efficacy is governed by its potency to inhibit farnesyl pyrophosphate synthase (FPPS), a primary target for the
bisphosphonates) and its affinity to bone mineral. The latter influences uptake and retention of the drug by the skeleton,
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differential distribution with the bone and diffusion through the osteocyte lacunar-canalicular system [17].

Over the years, a huge variety of bisphosphonates have been obtained, and their influence on the process of bone
resorption was evaluated. Because of the efficiency of currently used drugs, not much research is now being done on the
design,  synthesis  and evaluation of new drug candidates.  The large amount of  data considers rather modes of their
applications, longevity of treatment, recommendations and side-effects [18 - 20]. Most important is the evaluation of the
risk of developing bisphosphonate-related osteonecrosis of the jaw – a fatal side effect of chronic use of medication
[21].

Two types of efforts have been undertaken in the last decade to design new bisphosphonate anti-osteoporotic agents.
The first effort is based on knowledge of the three-dimensional structure of human farnesyl pyrophosphate synthase
(hFPPS)  [22  -  24].  FPPS  controls  intracellular  levels  of  farnesyl  pyrophosphate,  and  thus,  the  process  of  protein
farnesylation, which is critical for the proper subcellular localization and function of many proteins, including small
GTPases that regulate a wide variety of cellular processes. In the case of bone growth modulation, inhibitors of this
enzyme block excessive bone resorption in osteoclasts by causing apoptosis. The availability of the crystal structures of
structurally  variable  bisphosphonates  bound  to  the  human  enzyme  allowed  for  the  determination  of  its  structural
requirements [5, 25 - 27]. The knowledge of three-dimensional requirements of the enzyme active and binding sites, in
turn resulted in the rationale (mostly computer-aided) design of novel effective inhibitors (representative structures are
shown in Scheme 2) [5, 27 - 35]. However, none of these inhibitors were competitive with drugs already used to treat
osteoporosis  because  most  research  effort  was  concentrated  on  finding  possible  anti-cancer  rather  than  bone  anti-
resorptive agents.

Scheme (2). Representative examples of bisphosphonates designed as human FPPS inhibitors.

Because some of the side-effects caused by bisphosphonates (especially jaw osteonecrosis) may be a result of their
permanent binding to bone tissue, there has been interest in the development of more non-polar compounds and even
non-bisphosphonate FPPS inhibitors [36, 37]. Such inhibitors should have also higher bioavailability and thus, are also
considered  better  candidates  for  anti-cancer  agents.  The  most  successful  implementation  of  this  approach  was  the
discovery of phosphonocarboxylate cognates of risendronate and minodronate (Scheme 3). These compounds inhibit
bone resorption in vivo, however, to a lesser extent than the parent drugs [5, 32, 38 - 40]. Later, it was found that they
act as inhibitors of Rab geranylgeranyl transferase and prevent geranylgeranylation of small Rab GTPases [5, 40, 41].
Thus, these compounds might be considered as a novel class of anti-cancer agents.

Since the hydroxyl group present in most commercialized drugs enhances their binding to bone, its removal from
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the  molecule  may  result  in  weaker  binding  and  shorter  persistence  in  bones.  Incadronate,  also  called  cimadronate
(Scheme 3), is a drug in development for treatment of osteoporosis and hypercalcemia and is a successful example of
such reasoning [42]. This approach has also been applied to design strong inhibitors of FPPS from various sources,[5,
25,  43  -  46]  with  some  of  them  showing  unusual  patterns  of  enzyme  binding  [47].  Interestingly,  albeit  not  fully
developed,  the  approach  of  replacing  the  hydroxyl  group  by  fluorine  atom  has  been  tested  [48].  Representative
structures of these two classes of compounds are also shown in Scheme (3).

Scheme (3). Bisphosphonates with reduced hydrophilicity.

Another approach was to build up libraries of amino-methylenebisphosphonates and screen their ability to inhibit
proliferation  of  macrophage-like  J774E  cells  [49  -  52].  This  choice  of  a  screening  system  seems  to  be  reasonable
because this cell  line originates from the same precursors as osteoclasts.  Although some of the studied compounds
inhibited proliferation of the cells quite potently (representative structures are shown in Scheme 3), preclinical studies
performed on sheep indicated that there is no direct relationship between the results of screening and the efficiency of
medication in animals with induced osteoporosis [52].

An increase in hydrophobicity of bisphosphonates may also be achieved by modulation of the organic part of the
molecule. Examples of a successful implementation of this idea include introduction of long hydrocarbon or aromatic
substituents into molecules with previously reported activity (Scheme 4) [5, 25, 30, 31, 53, 54]. Interestingly, hydroxy-
bisphosphonic analogs of bile acids appeared to be exceptionally active against L929 cells and cultures of osteoclasts.
The  lipophilic  compounds  act  similarly  as  other  bisphosphonates  and  additionally  are  more  bioavailable  [55].
Therefore, their influence on prenylation is not limited to bone cells and might be considered as drugs affecting multiple
processes, or multi-target drugs.

Scheme (4). Lipophilic bisphosphonates.
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An obvious solution to reduce bone affinity and increase bisphosphonate bioavailability is its esterification, which
would mask the negative charge of phosphonic groups [56 - 60]. The resulting esters should also act as pro-drugs being
hydrolyzed within body fluids. Although some of the esters exerted anticancer activity in cell cultures, this effort did
not bring promising results so far.

An  important  factor  influencing  the  anti-resorptive  action  of  bisphosphonates  is  their  affinity  toward  bones.
Although intensively studied using various techniques and theoretical approaches, [61 - 66] this process is not fully
understood. Binding is mainly mediated by the presence of two phosphonic groups, but other structural features are also
important. This is reflected by a high dependence of bone affinity on the chemical structure of these drugs.

The efficiency of bisphosphonates as anti-resorptive drugs is governed by their molecular mechanism of action,
affinity to bones and distribution within this tissue. The latter was studied using either radioactive or fluorescent labeled
drugs [2, 67 - 71]. These studies indicated that distribution is also dependent on the chemical features of the drugs.

In summary, better understanding of the molecular mode of action, an exceptional selectivity of bisphosphonates for
bone mineral and the process of their distribution would explain their clinical features and creates new opportunities for
further discoveries.

Another, albeit poorly developed, idea is the possible use of bisphosphonates for osseointegration of implants by
coating their surface with these drugs and for healing of segmental bone fractures [72 - 76]. The latter system requires
development of a local delivery system that is easy to handle by surgeons (most likely application via syringe) in a form
that would remain in the targeted area of the affected tissue. Specific glues composed of hydroxyapatite and calcium
phosphate  microspheres  or  obtained by encapsulation of  bisphosphonates  in  hydrogels  have been designed for  this
application [77 - 83].

It should be noted, however, that bisphosphonates enhance bacterial adhesion and biofilm formation on the surface
of bone hydroxyapatite. This may limit their use as osseointegrating agents [84, 85].

BISPHOSPHONATES AS BONE-TARGETING UNITS

The standard routes of administration for bisphosphonates used in clinical practice are either oral or intravenous
infusion. Oral administration of bisphosphonates is complicated by poor bioavailability (generally below 1%) and poor
gastrointestinal tolerability [86, 87]. Due to their avid affinity to bone, between 30% and 60% of the absorbed substance
rapidly binds to bone mineral.  This  feature was used to construct  drug-bisphosphonate conjugates,  which might  be
considered  as  a  promising  method  for  selective  drug  targeting  to  the  bone  [88,  89].  Such  an  active  transport  of
therapeutic agents to bone is called osteotropic drug delivery system (ODDS). It reduces drug toxicity and improves its
bioavailability at the desired site. Bisphosphonates also have an advantage over other molecules because their affinity to
bone may be tuned by variation of their chemical structures.

This system was also used directly for construction of bone-regenerative drugs. Parathyroid hormone (PTH) is an
84-amino acid polypeptide that plays an important role in calcium regulation and bone remodeling. Its 34-amino acid
analog  Teriparatide  [90]  retains  most  of  the  functions  of  PTH and  is  an  FDA approved  drug  against  osteoporosis.
However, being a peptide, it is unstable in body fluids and is readily hydrolyzed by proteinases. Conjugation of this
compound to hydrazine bisphosphonates of varying lengths and hydrophobicity was proposed as a way to improve the
therapeutic  properties  of  Teriparatide  [91].  Another  approach  was  to  conjugate  a  popular  anti-osteoporetic  drug,
pamidronate,  with  an  edible  polysaccharide,  pullulan,  and  use  this  system  for  targeting  fluorescent  and  magnetic
resonance probes. In this manner, a theranostic system was obtained [92].

One of the major reasons of cancer-related women's death is the development of bone metastases. Therefore, the
selective targeting of anti-cancer drugs to bone tissue should improve their pharmaceutic performance. For example,
polymers  conjugated  with  both  bisphosphonates  and  anti-cancer  paclitaxel  have  been  designed  [93  -  97]  to
synergistically combine the anti-mitotic effect of paclitaxel with the anti-angiogenic and bone-targeting properties of
bisphosphonates [98]. Furthermore, direct conjunction of bisphosphonates with popularly used anti-cancer drugs such
as camptothecin, [99] bortezomib, [100] doxorubicin [101] or gemcitabine [102] has been used to target these drugs to
bone tissue or to multiple myeloma cells. Representative chemical structures of such conjugates are shown in (Scheme
5).
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Scheme (5). Examples of conjugates of bisphosphonates with anti-cancer drugs.

Another  solution  is  to  use  conventional  drug  delivery  systems,  such  as  liposomes  [103  -  106]  or  polymeric
(preferably biodegradable) nanoparticles [107 - 110] with surfaces functionalized (incrusted) with bisphosphonates.
Construction of such systems is challenging and thus, data on their functional activity are scarce.

Breast microcalcifications are found in about half of all women over the age of 50. They are a natural result of
breast aging and are not usually due to cancer but can be a sign of pre-cancerous changes or early breast cancer if a
group  is  found  in  one  area  and  therefore,  are  diagnosed  by  mammography.  Diagnosis,  however,  is  limited  to  the
sensitivity and specificity of this technique. Therefore, bisphosphonate-functionalized gold nanoparticles have been
designed and used for contrast-enhanced radiographic studies of microcalcifications [111]. Similar approaches using
specially designed technetium-99m and rhenium-188 complexes with pedant bisphosphonate groups have been applied
for imaging of arterial calcification, [112] a symptom of cardiovascular disease.

Osteomyelitis is a serious bone infection most often caused by bacteria. The most common treatments are antibiotics
and surgery to remove portions of bone that are infected or dead. Thus, selective targeting of antibiotics to bone seems
to be profitable, and some preliminary attempts to design and obtain osteotropic systems with fluoroquinones, [113,
114] vancomycin [115] and rifamycin [116] as active components have been undertaken.

An interesting system for the treatment of kidney stones has been proposed recently. Kidney stones are endemic,
and the use of extracorporeal shock wave lithotripsy where focused shock waves were used to fragment these stones
have been studied [117]. The shockwaves induce the formation of cavitation bubbles, whose collapse releases energy at
the stone, resulting in fragmentation into pieces small enough to be passed spontaneously. Because there is substantial
amount of hydroxyapatite in these stones, bisphosphonates are good candidates to deliver microbubbles into or near
urinary stones. Thus, a system has been designed where perfluoropropane is encapsulated in lipid microspheres and
delivered to the kidney by a catheter. The lipidic surface is composed of the mixture of commercial lipid (DPCC) and
lipid functionalized with bisphosphonate (Scheme 6). This mixture binds to the surface of the stone, and application of
external ultrasonic irradiation causes stone fragmentation.
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Scheme (6). Bisphosphonate-based system for the delivery of gas microbubbles into kidney stones.

ANTI-CANCER ACTIVITY

As estimated, farnesylation or geranylgeranylation account for more than 2% of the human proteome. Farnesylation
of  the  small  GTP-binding  proteins,  Ras,  is  indispensable  to  regulate  proliferation,  invasive  properties  and  pro-
angiogenic activity in human cancers [118]. Nitrogen-containing bisphosphonates are inhibitors of human FPPS and
related enzymes of  the mevalonate pathway and also inhibit  Ras farnesylation.  Thus,  they should be considered as
possible anti-cancer agents. This reasoning is supported by the ability of these compounds to suppress proliferation of
cancer cells of prostate, [119] breast, [120, 121] melanoma, [122] ovarian [123] and colorectal cancers, [124] as well as
glioblastoma [125] and multiple myelanoma [126]. Additionally these drugs have also been shown to kill cancers in
humans independently on their action on bones.

The most developed strategy is the use of bisphosphonates as adjuvants in breast cancer therapy. These compounds
are the major weapon to prevent bone-loss and skeleton-related events (bone pain, pathologic fractures, spinal cord
compression and hyperglycemia), which accompany breast cancer therapy with aromatase inhibitors [127 - 129].

Interestingly, epidemiological studies seem to reveal beneficial and preventive effects of anti-osteoporetic therapy
on cancer development [130, 131]. Nonetheless, the mechanisms underscoring these anti-cancer actions are not well
understood. This is because the physiologic mechanism of bisphosphonate action is complex, and they have been shown
to block tumor growth independently of FPPS inhibition, namely through γ,δ T-cell receptor activation, [132, 133] NF-
κB inhibition,  [134].  VEGF and  hypoxia  inducible  factor-α  suppression  [135]  as  well  as  inactivation  of  epidermal
growth factor receptors [136]. There is also a report showing that bisphosphonates target the three most epigenetic cell
levels, namely DNA methylation, histone deacetylation and microRNAs [137].

Recent study have shown that the use of carrier technology may convert antiresorptive zoledronate into manticancer
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therapeutic [210]. Reformulation of calcium zolendronate into nanoscale metal-organic framework, functionalized with
folate (as a selective carrier to cancer cells) served for this purpose.

Nitrogen-containing bisphosphonates are limited as anti-cancer agents because of high bone affinity and low plasma
concentration. Therefore, it will be necessary to use them in combination with other drugs or search for new chemical
entities.

The  strategy  to  increase  compound  plasma  level  relies  on  the  synthesis  of  new  agents  with  increased
hydrophobicity.  This  approach  has  already  been  described.

Another  approach  is  to  search  for  completely  new  mechanisms  of  action.  This  is  offered  by  the  use  of
bisphosphonate complexes with polyoxometalates [138]. These complexes can act as dual inhibitors, as phosphonate
inhibits FPPS, whereas polyoxometalate interferes with redox reactions. However, the mechanism of action of some of
these complexes is independent of mevalonic pathway inhibition, which suggests action via an unknown mechanism
[139 - 141].

There are limited reports on the use of bisphosphonates as agents that are synergistic with other drugs. A recent
report on the use of lovastatin, zoledronate and digeranylbisphosphonate (Scheme 7) indicated that the simultaneous use
of these three compounds as inhibitors of three subsequent steps in geranylgeranyl synthesis led to the inhibition of
growth and induction of apoptosis in human chronic myelogenous leukemia cells [142, 143].

Scheme (7). Three-component drug against myelogenous leukemia.

Being the most common source of cancer-related pain, bone metastases reduce functional capacity of patients and
undermine  their  quality  of  life.  Pain  may  be  a  result  of  disruption  of  tissue  upon  invasion  and/or  the  pressure  of
tumorous tissue on nerve endings. Bone metastases can also activate pain receptors in pathologically changed bones. In
the cases when pain is not manageable with analgesics it is commonly medicated by radiation therapy.

The  efficiency  of  bisphosphonates  in  reducing  pain  from  bone  metastases  is  well-documented  [144  -  146].
Zoledronic acid applied intravenously alone or complexed with radioactive metal ions has demonstrated the broadest
clinical activity [147 - 149].

Complex Regional  Pain syndrome type is  a  disease for  which no gold-standard treatment exists  to date.  It  may
initially affect  an arm or  leg and spread throughout  the body.  Bisphosphonates offer  some hope here,  although the
studies on their application are in infancy [150, 151].

ANTI-PROTOZOAL BISPHOSPHONATES

Protozoan infections  are  so  called  the  “world's  neglected  diseases,”  despite  the  fact  that  they affect  millions  of
humans, spreading mostly in the poorest populations. The most important infections are leishmaniases, affecting 12
million inhabitants and Chagas disease with 8 million people affected worldwide [152]. Furthermore, malaria, which is
a serious life-threatening infection caused by five different species of protozoa of the genus Plasmodium, is a huge
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public health concern [153]. According to the WHO report, there were 200 million malaria cases in 2013, with over
half a million deaths.

Protozoan farnesyl pyrophosphate synthase (FPPS) is also a valuable target in the search for drugs against protozoa
infections,  and  consequently,  bisphosphonates  were  quite  intensively  studied  here.  The  initial  efforts  had  been
concentrated  on  screening  the  influence  of  various  series  of  these  compounds  against  groups  of  parasites,  such  as
Leishmania, [154, 155] Plasmodium, [46, 154] Trypanosoma, [154, 156, 157] Toxoplasma, [54, 154, 158] Schistosoma
[159] and Cryptosporidium [160]. Thus, intensive screening of large libraries of structurally diverse bisphosphonates
resulted in selection of the most effective structures and determination of the molecular mechanisms of their activities.
Special emphasis have been put on bisphosphonate interactions with protozoan FPPSs and the related enzyme, namely
geranylgeranyl  phosphate  synthase  (GGPPS)  [45,  161  -  167].  These  studies  have  also  been  concentrated  on  the
synthesis of more effective inhibitors, specifically those of increased lipophilicity appeared to be effective (Scheme 8).

Scheme (8). Representative anti-protozoal bisphosphonates.

Bisphosphonates  also  appeared  to  inhibit  other  protozoan  enzymes,  namely  hexokinase  [168]  and  squalene
synthetase [169]. Additionally, their interesting action on protozoan acidosomes, acidic organelles rich in calcium and
phosphorus, have been observed [170]. These findings suggest that bisphosphonates might be considered as multi-target
drugs.

The soil-dwelling amoeba Dictyostelium discoideum is known for its remarkable life cycle, which makes it an ideal
model organism to study a range of biological problems, such as the mechanisms of action of both first generation [171,
172]  and  nitrogen-containing  bisphosphonates  [173].  These  studies  indicate  that  bisphosphonates  are  able  to  cross
peroxisomal membranes before they can exert inhibitory action.

These  studies  also  indicated  that  this  class  of  compounds  might  be  useful  as  anti-amoebic  agents.  This  was
supported by their inhibitory action towards Entamoeba histolytica, the causative agent of amebiasis and Naegleria
fowleria, a vector of primary amebic meningoencephalitis [174, 175]. This was an important finding because the annual
number of E. histolytica infections throughout the world is estimated to be approximately 50 million.

ANTIBACTERIAL BISPHOSPHONATES

Antibiotics have always been considered one of the greatest discoveries of the 20th century. This is true, but the real
interest  is  in  the  rise  of  antibiotic  resistance  [176].  In  the  last  two  decades,  multi-drug  resistant  microorganisms
challenged  the  scientific  community  into  developing  new  antimicrobial  compounds.  Isoprenoid  biosynthesis  is  an
important  target  here  because  isoprenoids  are  involved  in  the  early  steps  of  bacterial  cell-wall  biosynthesis.  New
compounds affecting cell wall biosynthesis are very promising because they could also cause restoration of sensitivity
to existing drugs.  Therefore,  it  is  not  surprising that  a  huge library of  bisphosphonates  were tested as  inhibitors  of
Escherichia  coli  growth,  with  some  of  them  exhibiting  quite  promising  activities  [177  -  180].  Additionally,  they
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appeared to be synergistic with other phosphonate antibiotics, such as fosfomycin.

Some  of  the  bisphosphonates  designed  as  FPPS  inhibitors  appeared  to  also  inhibit  undecaprenyl  diphosphate
synthase,  [181,  182]  an enzyme that  catalyzes  the  sequential  condensations  of  a  farnesyl  pyrophosphate  with  eight
isopentenyl  pyro-phosphates,  which  results  in  the  formation  of  new  cis-double  bonds  and  gives  undecaprenyl
pyrophosphate, a metabolite serving as a lipid carrier for peptidoglycan formation in the bacterial cell wall. Systematic
molecular modeling based on crystallographic studies enabled the definition of structural requirements for its inhibitors
[183].

Finding  that  two  structurally  similar  bisphosphonates  (Scheme  9)  are  able  to  inhibit  different  Mycobacterium
tuberculosis  enzymes,  decaprenyl  diphosphate  synthase  and  tuberculosinol  synthase,  suggest  that  bisphosphonates
could  act  as  multi-targeting  agents  [184].  This  possibility  was  confirmed  by  the  ability  of  one  of  the  inhibitors  of
undecaprenyl pyrophosphate synthase, shown in Scheme (9), to additionally intercalate with DNA [185].

Other enzymes have also been considered as targets for specific antibacterial agents, namely thymidyltransferase
[186] and δ1-pyrroline-5-carboxylate reductase as an inhibitor of Streptococcus pyogenes , [187] which is the cause of
many important human diseases ranging from mild superficial skin infections to life-threatening systemic infections.
Additionally, glutamine synthetase could also be a target of a selective anti-tuberculosis agent for use against infections
of the musculoskeletal system [188].

Preparation of hydroxyphosphonate derivatives of ciprofloxacin and moxifloxacin (representative structure is shown
in Scheme 9) represents a similar concept of combining bone-targeting and antibacterial properties in one molecule
[189].
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Scheme (9). Chosen antibacterials.

In summary, the application of bisphosphonates as potential antibacterial agents has been considered very recently,
but the number of reports is limited. The design and synthesis of specific chemicals inhibiting target enzymes of chosen
microorganisms is a solution.

ANTIVIRAL ACTIVITY

The finding that keto- and diketo-acids bind to the Mg(II)/Asp domain of HIV integrase in a manner similar to that
observed  upon  their  binding  with  prenyl  transferases  stimulated  interest  in  possible  use  of  bisphosphonates  as  its
inhibitors [178]. This resulted in the synthesis and evaluation of several inhibitors of this enzyme (Scheme 10) [190 -
192]. However, integrase is a difficult target for the development of efficient anti-HIV drugs. This results from the fact
that the compounds of interest have to be transported to the nuclei of infected cells, and polar bisphosphonates cannot
be successfully transported.

There are also selected reports on the action of these compounds on HIV reverse transcriptase (Scheme 10)[191,
193].

Scheme (10). Chosen antibacterials.
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In considering the above information, it  is not surprising that pamidronate was shown to inhibit  influenza virus
infections in mice [194].

PLANT GROWTH REGULATORS

The herbicidal effects of bisphosphonates were first discovered in 1979 according to the patent literature, but this
did not attract much attention until 1995 [195]. Their herbicidal action was then intensively studied, and they were the
first reported inhibitors of farnesyl pyrophosphate synthetase (FPPS) [196, 197]. This inhibitory activity was observed
when studying bleaching herbicides influencing biosynthesis of caretonoids. Further studies have shown that herbicidal
aminomethylene-bisphosphonates  may  be  considered  multi-target  substances,  which  was  documented  by  their
inhibitory activities towards glutamine synthetase, [198, 199] 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP)
synthase,  [200]  δ1-pyrroline-5-carboxylate  (P5CR)  reductase  [201,  202]  and  pyrophosphatase  [203].  Thus,  these
compounds may be considered a heterogeneous group of compounds with variable modes of action (Scheme 11). Quite
interestingly, most active compounds contain a halogen atom or atoms in the N-aromatic substituent (Scheme 11).

Unfortunately,  despite  their  excellent  action  under  laboratory  conditions,  they  have  not  been  introduced  to
agriculture. Thus, recent and scarce studies on the influence of these compounds on plant growth used bisphosphonates
as tools to study the role of isoprenoid biosynthesis [204 - 207]. These compounds enabled us to determine the high
elasticity of the chloroplastic isoprenoid pathway.

Scheme (11). Plant growth regulating bisphosphonates.

Alpine pennycress (Noccaea caerulescens)is native to the mountains of central and southern Europe. It arrived in
Finland at the end of the 19th  century and is now used as a hyperaccumulator of zinc, cadmium and nickel ions for
phytoremediation purposes  [208].  The simultaneous  use  of  the  water  insoluble,  extremely  effective  metal  chelator,
hydroxyundecylidene-1,1,-bisphosphonic acid (Scheme 11), and this plant caused a significant increase of the metal
sequestering properties of Alpine pennycress [209].

CONCLUSION

Bisphosphonates are mostly recognized by their profound effects on bone physiology. They inhibit bone resorption
by  inducing  apoptosis  of  osteoclasts  and  thus,  preventing  age-related  bone  loss  and  deterioration  of  bone
microarchitecture.  Because  some  advanced  cancers,  such  as  breast  or  prostate  cancer,  can  spread  to  the  bone,
bisphosphonates could modify the process of metastasis. Furthermore, bisphosphonates possess other useful physiologic
properties, which make them promising anti-cancer, anti-protozoal, antibacterial and antiviral agents. However, their
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high polarity and thus low absorption in humans limit these applications. Therefore, the careful design of their chemical
structures devoted to specific applications is required.
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